3.6.66 \(\int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\) [566]

3.6.66.1 Optimal result
3.6.66.2 Mathematica [C] (verified)
3.6.66.3 Rubi [A] (verified)
3.6.66.4 Maple [A] (verified)
3.6.66.5 Fricas [B] (verification not implemented)
3.6.66.6 Sympy [F]
3.6.66.7 Maxima [A] (verification not implemented)
3.6.66.8 Giac [F(-1)]
3.6.66.9 Mupad [B] (verification not implemented)

3.6.66.1 Optimal result

Integrand size = 23, antiderivative size = 204 \[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\left (a^2-2 a b-b^2\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}} \]

output
-1/2*(a^2-2*a*b-b^2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)-1/2*(a^ 
2-2*a*b-b^2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)-1/4*(a^2+2*a*b-b 
^2)*ln(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/d*2^(1/2)+1/4*(a^2+2*a*b-b^2 
)*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/d*2^(1/2)-2*a^2/d/tan(d*x+c)^( 
1/2)
 
3.6.66.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.83 (sec) , antiderivative size = 166, normalized size of antiderivative = 0.81 \[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {4 b^2+4 (a-b) (a+b) \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},1,\frac {3}{4},-\tan ^2(c+d x)\right )+\sqrt {2} a b \left (2 \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-2 \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )+\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right ) \sqrt {\tan (c+d x)}}{2 d \sqrt {\tan (c+d x)}} \]

input
Integrate[(a + b*Tan[c + d*x])^2/Tan[c + d*x]^(3/2),x]
 
output
-1/2*(4*b^2 + 4*(a - b)*(a + b)*Hypergeometric2F1[-1/4, 1, 3/4, -Tan[c + d 
*x]^2] + Sqrt[2]*a*b*(2*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - 2*ArcTan[ 
1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] + Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan 
[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])*Sqrt[Tan[ 
c + d*x]])/(d*Sqrt[Tan[c + d*x]])
 
3.6.66.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 182, normalized size of antiderivative = 0.89, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {3042, 4025, 3042, 4017, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \tan (c+d x))^2}{\tan (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4025

\(\displaystyle \int \frac {2 a b-\left (a^2-b^2\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx-\frac {2 a^2}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {2 a b-\left (a^2-b^2\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx-\frac {2 a^2}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int \frac {2 a b-\left (a^2-b^2\right ) \tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}}{d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \int \frac {\tan (c+d x)+1}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {1}{2} \int \frac {1}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} \int \frac {1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )\right )}{d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan (c+d x)}+1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a^2}{d \sqrt {\tan (c+d x)}}\)

input
Int[(a + b*Tan[c + d*x])^2/Tan[c + d*x]^(3/2),x]
 
output
(2*(-1/2*((a^2 - 2*a*b - b^2)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sq 
rt[2]) + ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2])) + ((a^2 + 2*a*b 
- b^2)*(-1/2*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]/Sqrt[2] + 
Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]/(2*Sqrt[2])))/2))/d - ( 
2*a^2)/(d*Sqrt[Tan[c + d*x]])
 

3.6.66.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4025
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^2, x_Symbol] :> Simp[(b*c - a*d)^2*((a + b*Tan[e + f*x])^(m + 
 1)/(b*f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e 
+ f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Ta 
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
 && LtQ[m, -1] && NeQ[a^2 + b^2, 0]
 
3.6.66.4 Maple [A] (verified)

Time = 0.06 (sec) , antiderivative size = 200, normalized size of antiderivative = 0.98

method result size
derivativedivides \(\frac {\frac {a b \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{2}+\frac {\left (-a^{2}+b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}-\frac {2 a^{2}}{\sqrt {\tan \left (d x +c \right )}}}{d}\) \(200\)
default \(\frac {\frac {a b \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{2}+\frac {\left (-a^{2}+b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}-\frac {2 a^{2}}{\sqrt {\tan \left (d x +c \right )}}}{d}\) \(200\)
parts \(\frac {a^{2} \left (-\frac {2}{\sqrt {\tan \left (d x +c \right )}}-\frac {\sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}+\frac {b^{2} \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4 d}+\frac {a b \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{2 d}\) \(286\)

input
int((a+b*tan(d*x+c))^2/tan(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/d*(1/2*a*b*2^(1/2)*(ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2 
)*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arc 
tan(-1+2^(1/2)*tan(d*x+c)^(1/2)))+1/4*(-a^2+b^2)*2^(1/2)*(ln((1-2^(1/2)*ta 
n(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arct 
an(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))-2*a^ 
2/tan(d*x+c)^(1/2))
 
3.6.66.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1023 vs. \(2 (174) = 348\).

Time = 0.28 (sec) , antiderivative size = 1023, normalized size of antiderivative = 5.01 \[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {d \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} + d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} \log \left ({\left ({\left (a^{2} - b^{2}\right )} d^{3} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}} - 2 \, {\left (a^{5} b - 6 \, a^{3} b^{3} + a b^{5}\right )} d\right )} \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} + d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} + {\left (a^{8} - 4 \, a^{6} b^{2} - 10 \, a^{4} b^{4} - 4 \, a^{2} b^{6} + b^{8}\right )} \sqrt {\tan \left (d x + c\right )}\right ) \tan \left (d x + c\right ) - d \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} + d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} \log \left (-{\left ({\left (a^{2} - b^{2}\right )} d^{3} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}} - 2 \, {\left (a^{5} b - 6 \, a^{3} b^{3} + a b^{5}\right )} d\right )} \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} + d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} + {\left (a^{8} - 4 \, a^{6} b^{2} - 10 \, a^{4} b^{4} - 4 \, a^{2} b^{6} + b^{8}\right )} \sqrt {\tan \left (d x + c\right )}\right ) \tan \left (d x + c\right ) - d \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} - d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} \log \left ({\left ({\left (a^{2} - b^{2}\right )} d^{3} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}} + 2 \, {\left (a^{5} b - 6 \, a^{3} b^{3} + a b^{5}\right )} d\right )} \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} - d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} + {\left (a^{8} - 4 \, a^{6} b^{2} - 10 \, a^{4} b^{4} - 4 \, a^{2} b^{6} + b^{8}\right )} \sqrt {\tan \left (d x + c\right )}\right ) \tan \left (d x + c\right ) + d \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} - d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} \log \left (-{\left ({\left (a^{2} - b^{2}\right )} d^{3} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}} + 2 \, {\left (a^{5} b - 6 \, a^{3} b^{3} + a b^{5}\right )} d\right )} \sqrt {\frac {4 \, a^{3} b - 4 \, a b^{3} - d^{2} \sqrt {-\frac {a^{8} - 12 \, a^{6} b^{2} + 38 \, a^{4} b^{4} - 12 \, a^{2} b^{6} + b^{8}}{d^{4}}}}{d^{2}}} + {\left (a^{8} - 4 \, a^{6} b^{2} - 10 \, a^{4} b^{4} - 4 \, a^{2} b^{6} + b^{8}\right )} \sqrt {\tan \left (d x + c\right )}\right ) \tan \left (d x + c\right ) + 4 \, a^{2} \sqrt {\tan \left (d x + c\right )}}{2 \, d \tan \left (d x + c\right )} \]

input
integrate((a+b*tan(d*x+c))^2/tan(d*x+c)^(3/2),x, algorithm="fricas")
 
output
-1/2*(d*sqrt((4*a^3*b - 4*a*b^3 + d^2*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 
 - 12*a^2*b^6 + b^8)/d^4))/d^2)*log(((a^2 - b^2)*d^3*sqrt(-(a^8 - 12*a^6*b 
^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4) - 2*(a^5*b - 6*a^3*b^3 + a*b^5)*d 
)*sqrt((4*a^3*b - 4*a*b^3 + d^2*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12* 
a^2*b^6 + b^8)/d^4))/d^2) + (a^8 - 4*a^6*b^2 - 10*a^4*b^4 - 4*a^2*b^6 + b^ 
8)*sqrt(tan(d*x + c)))*tan(d*x + c) - d*sqrt((4*a^3*b - 4*a*b^3 + d^2*sqrt 
(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4))/d^2)*log(-((a^2 
 - b^2)*d^3*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4) 
- 2*(a^5*b - 6*a^3*b^3 + a*b^5)*d)*sqrt((4*a^3*b - 4*a*b^3 + d^2*sqrt(-(a^ 
8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4))/d^2) + (a^8 - 4*a^6* 
b^2 - 10*a^4*b^4 - 4*a^2*b^6 + b^8)*sqrt(tan(d*x + c)))*tan(d*x + c) - d*s 
qrt((4*a^3*b - 4*a*b^3 - d^2*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2 
*b^6 + b^8)/d^4))/d^2)*log(((a^2 - b^2)*d^3*sqrt(-(a^8 - 12*a^6*b^2 + 38*a 
^4*b^4 - 12*a^2*b^6 + b^8)/d^4) + 2*(a^5*b - 6*a^3*b^3 + a*b^5)*d)*sqrt((4 
*a^3*b - 4*a*b^3 - d^2*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + 
 b^8)/d^4))/d^2) + (a^8 - 4*a^6*b^2 - 10*a^4*b^4 - 4*a^2*b^6 + b^8)*sqrt(t 
an(d*x + c)))*tan(d*x + c) + d*sqrt((4*a^3*b - 4*a*b^3 - d^2*sqrt(-(a^8 - 
12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4))/d^2)*log(-((a^2 - b^2)*d 
^3*sqrt(-(a^8 - 12*a^6*b^2 + 38*a^4*b^4 - 12*a^2*b^6 + b^8)/d^4) + 2*(a^5* 
b - 6*a^3*b^3 + a*b^5)*d)*sqrt((4*a^3*b - 4*a*b^3 - d^2*sqrt(-(a^8 - 12...
 
3.6.66.6 Sympy [F]

\[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (a + b \tan {\left (c + d x \right )}\right )^{2}}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((a+b*tan(d*x+c))**2/tan(d*x+c)**(3/2),x)
 
output
Integral((a + b*tan(c + d*x))**2/tan(c + d*x)**(3/2), x)
 
3.6.66.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 173, normalized size of antiderivative = 0.85 \[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \frac {8 \, a^{2}}{\sqrt {\tan \left (d x + c\right )}}}{4 \, d} \]

input
integrate((a+b*tan(d*x+c))^2/tan(d*x+c)^(3/2),x, algorithm="maxima")
 
output
-1/4*(2*sqrt(2)*(a^2 - 2*a*b - b^2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(t 
an(d*x + c)))) + 2*sqrt(2)*(a^2 - 2*a*b - b^2)*arctan(-1/2*sqrt(2)*(sqrt(2 
) - 2*sqrt(tan(d*x + c)))) - sqrt(2)*(a^2 + 2*a*b - b^2)*log(sqrt(2)*sqrt( 
tan(d*x + c)) + tan(d*x + c) + 1) + sqrt(2)*(a^2 + 2*a*b - b^2)*log(-sqrt( 
2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + 8*a^2/sqrt(tan(d*x + c)))/d
 
3.6.66.8 Giac [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+b*tan(d*x+c))^2/tan(d*x+c)^(3/2),x, algorithm="giac")
 
output
Timed out
 
3.6.66.9 Mupad [B] (verification not implemented)

Time = 5.64 (sec) , antiderivative size = 949, normalized size of antiderivative = 4.65 \[ \int \frac {(a+b \tan (c+d x))^2}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=2\,\mathrm {atanh}\left (\frac {32\,a^4\,d^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {a^3\,b}{d^2}-\frac {b^4\,1{}\mathrm {i}}{4\,d^2}-\frac {a\,b^3}{d^2}-\frac {a^4\,1{}\mathrm {i}}{4\,d^2}+\frac {a^2\,b^2\,3{}\mathrm {i}}{2\,d^2}}}{16\,a^6\,d^2+a^5\,b\,d^2\,32{}\mathrm {i}-112\,a^4\,b^2\,d^2-a^3\,b^3\,d^2\,192{}\mathrm {i}+112\,a^2\,b^4\,d^2+a\,b^5\,d^2\,32{}\mathrm {i}-16\,b^6\,d^2}+\frac {32\,b^4\,d^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {a^3\,b}{d^2}-\frac {b^4\,1{}\mathrm {i}}{4\,d^2}-\frac {a\,b^3}{d^2}-\frac {a^4\,1{}\mathrm {i}}{4\,d^2}+\frac {a^2\,b^2\,3{}\mathrm {i}}{2\,d^2}}}{16\,a^6\,d^2+a^5\,b\,d^2\,32{}\mathrm {i}-112\,a^4\,b^2\,d^2-a^3\,b^3\,d^2\,192{}\mathrm {i}+112\,a^2\,b^4\,d^2+a\,b^5\,d^2\,32{}\mathrm {i}-16\,b^6\,d^2}-\frac {192\,a^2\,b^2\,d^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {a^3\,b}{d^2}-\frac {b^4\,1{}\mathrm {i}}{4\,d^2}-\frac {a\,b^3}{d^2}-\frac {a^4\,1{}\mathrm {i}}{4\,d^2}+\frac {a^2\,b^2\,3{}\mathrm {i}}{2\,d^2}}}{16\,a^6\,d^2+a^5\,b\,d^2\,32{}\mathrm {i}-112\,a^4\,b^2\,d^2-a^3\,b^3\,d^2\,192{}\mathrm {i}+112\,a^2\,b^4\,d^2+a\,b^5\,d^2\,32{}\mathrm {i}-16\,b^6\,d^2}\right )\,\sqrt {-\frac {a^4\,1{}\mathrm {i}-4\,a^3\,b-a^2\,b^2\,6{}\mathrm {i}+4\,a\,b^3+b^4\,1{}\mathrm {i}}{4\,d^2}}-2\,\mathrm {atanh}\left (\frac {32\,a^4\,d^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {a^4\,1{}\mathrm {i}}{4\,d^2}+\frac {b^4\,1{}\mathrm {i}}{4\,d^2}-\frac {a\,b^3}{d^2}+\frac {a^3\,b}{d^2}-\frac {a^2\,b^2\,3{}\mathrm {i}}{2\,d^2}}}{-16\,a^6\,d^2+a^5\,b\,d^2\,32{}\mathrm {i}+112\,a^4\,b^2\,d^2-a^3\,b^3\,d^2\,192{}\mathrm {i}-112\,a^2\,b^4\,d^2+a\,b^5\,d^2\,32{}\mathrm {i}+16\,b^6\,d^2}+\frac {32\,b^4\,d^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {a^4\,1{}\mathrm {i}}{4\,d^2}+\frac {b^4\,1{}\mathrm {i}}{4\,d^2}-\frac {a\,b^3}{d^2}+\frac {a^3\,b}{d^2}-\frac {a^2\,b^2\,3{}\mathrm {i}}{2\,d^2}}}{-16\,a^6\,d^2+a^5\,b\,d^2\,32{}\mathrm {i}+112\,a^4\,b^2\,d^2-a^3\,b^3\,d^2\,192{}\mathrm {i}-112\,a^2\,b^4\,d^2+a\,b^5\,d^2\,32{}\mathrm {i}+16\,b^6\,d^2}-\frac {192\,a^2\,b^2\,d^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {a^4\,1{}\mathrm {i}}{4\,d^2}+\frac {b^4\,1{}\mathrm {i}}{4\,d^2}-\frac {a\,b^3}{d^2}+\frac {a^3\,b}{d^2}-\frac {a^2\,b^2\,3{}\mathrm {i}}{2\,d^2}}}{-16\,a^6\,d^2+a^5\,b\,d^2\,32{}\mathrm {i}+112\,a^4\,b^2\,d^2-a^3\,b^3\,d^2\,192{}\mathrm {i}-112\,a^2\,b^4\,d^2+a\,b^5\,d^2\,32{}\mathrm {i}+16\,b^6\,d^2}\right )\,\sqrt {\frac {a^4\,1{}\mathrm {i}+4\,a^3\,b-a^2\,b^2\,6{}\mathrm {i}-4\,a\,b^3+b^4\,1{}\mathrm {i}}{4\,d^2}}-\frac {2\,a^2}{d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}} \]

input
int((a + b*tan(c + d*x))^2/tan(c + d*x)^(3/2),x)
 
output
2*atanh((32*a^4*d^3*tan(c + d*x)^(1/2)*((a^3*b)/d^2 - (b^4*1i)/(4*d^2) - ( 
a*b^3)/d^2 - (a^4*1i)/(4*d^2) + (a^2*b^2*3i)/(2*d^2))^(1/2))/(16*a^6*d^2 - 
 16*b^6*d^2 + a*b^5*d^2*32i + a^5*b*d^2*32i + 112*a^2*b^4*d^2 - a^3*b^3*d^ 
2*192i - 112*a^4*b^2*d^2) + (32*b^4*d^3*tan(c + d*x)^(1/2)*((a^3*b)/d^2 - 
(b^4*1i)/(4*d^2) - (a*b^3)/d^2 - (a^4*1i)/(4*d^2) + (a^2*b^2*3i)/(2*d^2))^ 
(1/2))/(16*a^6*d^2 - 16*b^6*d^2 + a*b^5*d^2*32i + a^5*b*d^2*32i + 112*a^2* 
b^4*d^2 - a^3*b^3*d^2*192i - 112*a^4*b^2*d^2) - (192*a^2*b^2*d^3*tan(c + d 
*x)^(1/2)*((a^3*b)/d^2 - (b^4*1i)/(4*d^2) - (a*b^3)/d^2 - (a^4*1i)/(4*d^2) 
 + (a^2*b^2*3i)/(2*d^2))^(1/2))/(16*a^6*d^2 - 16*b^6*d^2 + a*b^5*d^2*32i + 
 a^5*b*d^2*32i + 112*a^2*b^4*d^2 - a^3*b^3*d^2*192i - 112*a^4*b^2*d^2))*(- 
(4*a*b^3 - 4*a^3*b + a^4*1i + b^4*1i - a^2*b^2*6i)/(4*d^2))^(1/2) - 2*atan 
h((32*a^4*d^3*tan(c + d*x)^(1/2)*((a^4*1i)/(4*d^2) + (b^4*1i)/(4*d^2) - (a 
*b^3)/d^2 + (a^3*b)/d^2 - (a^2*b^2*3i)/(2*d^2))^(1/2))/(16*b^6*d^2 - 16*a^ 
6*d^2 + a*b^5*d^2*32i + a^5*b*d^2*32i - 112*a^2*b^4*d^2 - a^3*b^3*d^2*192i 
 + 112*a^4*b^2*d^2) + (32*b^4*d^3*tan(c + d*x)^(1/2)*((a^4*1i)/(4*d^2) + ( 
b^4*1i)/(4*d^2) - (a*b^3)/d^2 + (a^3*b)/d^2 - (a^2*b^2*3i)/(2*d^2))^(1/2)) 
/(16*b^6*d^2 - 16*a^6*d^2 + a*b^5*d^2*32i + a^5*b*d^2*32i - 112*a^2*b^4*d^ 
2 - a^3*b^3*d^2*192i + 112*a^4*b^2*d^2) - (192*a^2*b^2*d^3*tan(c + d*x)^(1 
/2)*((a^4*1i)/(4*d^2) + (b^4*1i)/(4*d^2) - (a*b^3)/d^2 + (a^3*b)/d^2 - (a^ 
2*b^2*3i)/(2*d^2))^(1/2))/(16*b^6*d^2 - 16*a^6*d^2 + a*b^5*d^2*32i + a^...